
N. C. Landolfi

spin: the personal cloud

Nicholas C. Landolfi

Revision: b7f91fe, December 2022
1



spin is...

I a remote file system

I a personal cloud

I a digital data store as a utility

I a device-independent, globally available file store

I a global namespace

2



spin consists of

I a KeyServer, holding the access credentials of citizens

I one or more DirServers, holding directory trees for citizens

I one or more BitServers, holding file blocks for citizens

I together these give an API resembling an access-controlled file system

I with caching, this file system can be over the network, but (relatively) fast

I may be slow on first read, speeds up with usual memory access patterns

3



citizens and keys

I a citizen is a user, member, customer; identified by a name (unicode string)

I a citizen has keys, these records are managed by a KeyServer; a key has the following fields

I type (unicode string); e.g., unknown, password

I name (unicode string); e.g., lando, lando_extra_key

I citizen (unicode string); e.g., lando, mike, cgb

I data (unicode string); e.g., base64 encoded password hash

I meta (unicode string); e.g., salt

I created at (timestamp); e.g., 12/27/22 12:00 PM

I expires at (timestamp); e.g., 12/28/22 12:00 PM

4



KeyServer API

I the KeyServer maintains a directory of keys

I it can be accessed by clients via two methods

I Which — lookup a key

I input: public, private (unicode strings)
I output: a key, with the data and meta fields empty

I Temp — create a temporary session

I input: public, private (unicode strings), duration (as string, e.g. 2m5s, 48h)
I output: a key (with the data and meta fields empty), the private password (unicode string)

5



directory trees

I a user has a hierarchical directory tree; like a file tree in Unix; e.g.,

I / (user directory root, always a dir)

I dir1 (a directory)
I hello.txt (a file)
I world.csv (a file)

I data.txt (a file)
I cal.csv (a directory)

I cal.csv (a file)
I cal.csv.ops (a file)

I paths identify files and directories; e.g., /dir1, /cal.csv/cal.csv

I a DirServer manages this tree

6



directory entries

I a path is said to exist if there is a directory entry associated with it; entries have fields

I citizen (unicode string); e.g., lando, cgb

I path (unicode string); e.g., /dir1, /cal.csv/cal.csv.ops

I type (unicode string); e.g., file, dir

I blocks (list of DirBlock)

I a file entry is composed of directory blocks which have fields

I addr (unicode string); e.g., https://bit.spinsrv.com

I ref (unicode string); e.g. 743777dfda479b4c34a3221c57a864715c4811e6d002f11232dad898e2d8123f

I offset (int64); e.g., 20,971,520

I size (int64); e.g., 10,485,760

7



DirServer API

I a DirServer maintains a tree of DirEntry

I it can be accessed by clients via three methods

I Apply — serially apply a list of directory operations atomically

I input: public, private (unicode strings); list of ops, which have operation type and dir entry
I output: list of entries, an error

I Tree — retrieve all directory entries underneath a path to some level

I input: public, private, citizen, path (unicode strings), level (int)
I output: list of dir entries, an error

I Watch — retrieve all changes underneath a path

I input: public, private, citizen, path (unicode strings), sequence (int, w/ special values)
I output: initial response, then a stream of dir events

8



BitServer API

I a BitServer maintains a store of named byte sequences (also called blobs, chunks)

I the name of a sequence is called its ref

I it can be accessed by clients via one method

I Apply — batch apply (not atomic) a sequence of bit ops; have fields

I operation type; one of “put”,“get”, “del”
I ref; unicode string
I bytes; byte array, only for when type is put

9


